Flat surfaces in the hyperbolic 3-space
نویسندگان
چکیده
In this paper we give a conformal representation of flat surfaces in the hyperbolic 3space using the complex structure induced by its second fundamental form. We also study some examples and the behaviour at infinity of complete flat ends. Mathematics Subject Classification (1991): 53A35, 53C42
منابع مشابه
Hyperbolic surfaces of $L_1$-2-type
In this paper, we show that an $L_1$-2-type surface in the three-dimensional hyperbolic space $H^3subset R^4_1$ either is an open piece of a standard Riemannian product $ H^1(-sqrt{1+r^2})times S^{1}(r)$, or it has non constant mean curvature, non constant Gaussian curvature, and non constant principal curvatures.
متن کاملDiscrete Flat Surfaces and Linear Weingarten Surfaces in Hyperbolic 3-space
We define discrete flat surfaces in hyperbolic 3-space H from the perspective of discrete integrable systems and prove properties that justify the definition. We show how these surfaces correspond to previously defined discrete constant mean curvature 1 surfaces in H, and we also describe discrete focal surfaces (discrete caustics) that can be used to define singularities on discrete flat surfa...
متن کاملComplete Flat Surfaces with two Isolated Singularities in Hyperbolic 3 - space 1
We construct examples of flat surfaces in H3 which are graphs over a twopunctured horosphere and classify complete embedded flat surfaces in H3 with only one end and at most two isolated singularities. 2000 Mathematical Subject Classification: 53A35, 53C42
متن کاملInvariant Surfaces under Hyperbolic Translations in Hyperbolic Space
In this paper, we consider hyperbolic rotation (G0), hyperbolic translation (G1) and horocyclic rotation (G2) groups in H3, which is called Minkowski model of hyperbolic space. Then, we investigate extrinsic differential geometry of invariant surfaces under subgroups of G0 in H3. Also, we give explicit parametrization of this invariant surfaces with respect to constant hyperbolic curvature of p...
متن کاملA Characterization of Weingarten Surfaces in Hyperbolic 3-space
We study 2-dimensional submanifolds of the space L(H) of oriented geodesics of hyperbolic 3-space, endowed with the canonical neutral Kähler structure. Such a surface is Lagrangian iff there exists a surface in H orthogonal to the geodesics of Σ. We prove that the induced metric on a Lagrangian surface in L(H) has zero Gauss curvature iff the orthogonal surfaces in H are Weingarten: the eigenva...
متن کامل